Master of Works and
Consulting Engineers
Consultant Architects:
Main Contractors City Engineer John Armour, C. Eng., FICE。MIMunE。, MITPI

Scott Wilson Kirkpatrick \& Partners
William Holford and Associates
Balfour Beatty \& Co. Ltd.,

CONTENTS

1. Introduction
2. Road Programme and Traffic Estimates
3. Site Investigations
4. Earthworks and ,Pavements
5. Structures
6. Drainage and 'Services
7. Signing, Lighting and Road Heating

TABLES

1. Design Standards

FIGURES

1. Woodside Section - Contract No. 2 - General Plan \& Profile
2. Recommended Highway Network
3. Highway Development - Phase 1
4. Typical Motorway Cross Section
5. Bridges 11 \& 12. General Arrangement

6: Retaining Wall. Typical detail.

The Works to be carried out under the Woodside 2 Contract are shown on Fig. 1. They include the construction of seven bridges (including two viaduots), two footbridges, two pedestrian subways, eleven retaining walls, about 0.8 miles (1.3 km) of dual multio lane motorway, about $0.7 \mathrm{miles}(1.1 \mathrm{~km})$ of surface streets, together with service diversions and drainage works. Their construction started in January 1969 and is due to be completed by the middle of 1971 at a cost of $£ 4$ million.

The centre section of the motorway is carried on viaducts so as to ensure environmental continuity at ground level and to lessen the impact of the motorway on the area as a whole.

This Contract completes the North Flank of the Glasgow Inner Ring Road which forms the hub of the highway network recommended by the "Highway Plan for Glasgow" in 1965 and confirmed by the Greater Glasgow Transportation Study in 1968, see Fig. 2。

The design speed for the Ring Road is $50 \mathrm{~m} \cdot \mathrm{poh}_{\mathrm{o}}(80 \mathrm{~km} / \mathrm{h})$, with lane widths of 12 ft . $(3.65 \mathrm{~m})$ and 10 ft . (3.05 m) hard shoulders. The bridges are degigned for M.O.T. HA and HB (45 units) loading. , mil.
The principal standards used in the design are shown on Table No. 1.
2. ROAD PROGRAMME AND TRAFFIC ESTIMATES

The implementation of the Highway Network started with the Townead Interchange and is programmed for completion in the next 25 years.

The Ring Road has a dual function in that it provides a bypass to the City Centre for both long and medium distance traffic and acts as a distributor for traffic wishing to enter the City Centre. Initially the north flank provides a motorway route across the City connecting the Edinburgh road with Great Western Road. In 1975 the roads shown in Fig 3 should have been built and there will then be a motorway route across the City linking Glasgow Airport in the west with the Edinburgh and London roads in the east.

The design of the north flank of the Ring Road is based on the predicted 1990 traffic flow of 86,000 vehicles per day.

3. SITE INVESTIGATION

A Site Investigation was carried out in 1965/66 and showed that generally the strata constisted of made ground overlying soft clays and sands at the west half of the job and overlying boulder clay at the east half. Beneath these strata was rock (sandstones and shales); the depth to rock varying from a few feet to a maximum of 50 ft . (15 m).

The investigation showed nothing untoward considering the geology of the area and the industrial heritage of Glasgow.

4. /

The motorway is generally elevated and filling materials has to be imported to make up the embankments．

A typical cross section of the motorway pavement is shown on Fig．4．

5．STRUCTURES

The most interesting of the bridges are the two viaducts． These are $1,200 \mathrm{ft}$ 。 and $1,500 \mathrm{ft}$ ．in length（ 365 m and 460 m ） and consjat of precast post－tensioned beams supported on inverted ＇T＇RoC．pier heads as shown in Fig．5．The foundations consist of pad footings where the depth to rock is 15 ft 。（ 5 m ）or less and insitu concrete piles when rock is deeper than this．As with all bridges the soffits of the bridge decks are flush presenting a clean and flowing line．

Precast exposed aggregate concrete panels have been used to form the permanent facework to the retaining walls and exposed bridge abutments，typical details being shown Fig． 6 。

6．DRAINAGE AND SERVICES

In general the surface water sewers have been designed for the run－off from a storm with a once－a－year frequency．Sewers at critical points on the road have been designed for a five． year storm frequency．Drainage from the motorway is carried to the River Clyde in a new trunk sewer whioh also serves the West Flank of the Inner Ring Road．

Services alterations at a cost of nearly K 0.2 million have． had to be carried out．The major part of this expenditure has been on re－routing trunk telephone cables and electric power transmission cables．Trunk water and gas mains have not been affected as they follow principal traffic routes which the motorway crosses on structure．In general it is desirable for service diversions to be done in advance of the motorway construction，but this could only have been done on this section with a considerable increase in costs．

7．SIGNING，LIGHTING AND ROAD HEATING
Overhead gantry signs are to be used with the possible inclusion of＇Motorsig＇units．All roads are to be light at night by means of 100 ft 。（ 30 m ）high mast lighting installation．

Road heating will be provided on ramps with steep gradients．

TABLE NO. 1

(K. - is the length of ourve required to effect a 1% change in gradient and is approximately equal to $1 / 100$ th of the radius of the curve).

WOODSIDE SECTION - CONTRACT NO. 2.
DESCRIPTION OF STRUCTURES

BRIDGE 9. R.C. T-beam construetion confinuows of 2 s. Columess and oper abotwerd. ar 30" ϕ cast-un-setu boted piles. Contilever well abotment an sock. Max slew 60. Nax spon apptox 160^{\prime} splid in to $100^{\prime} \$ 60^{\prime}$. Mild sted en columus high y'e in deck. 4500 corcrete me columins and deck. 3)50 m of oller pards.

BRidoses $11 \$ 12$ See page 2 of hand-out.
Beams ate apptox 85^{\prime} long. I beams weegh apptox 40 tom ; Edgc 6 weigh approx 80 ton. Sttessung sysdem is CCL Multiforce hall statands in tendar pulled togedest) but becanse of deticuttesese obtaming jacks have actually used Sdressomatic Sysdem (earh strand pullid separately). Each strand casists of sow crecular wites. Load m each sdrand an I-beaue is 12 ton and "each strand us edge beax is 16 ton. Hog ar beam after sitese about $11 / 2^{\prime \prime}$. I-beaws esected with sugle crave 125 tor capacity. Edge beaws esected wish two ctanes - 125 to and 80 tom.

2 Beams/day. 240 Beams

BRIDGE 13. All columns on spread footing. Hollow continvoüs box beans an a tight curve. Has a heavy shear corrector ad fired onus to hold the whole thing together. 4500 conctete m deck ard columns. Mild stael throughout.

BRiDGE 14. All columns and abuts. an $30^{\prime \prime} \phi \operatorname{cost}-i n$ - situ bored pitas. Six span continuous beaver and slab construction. 4500 carcicie columns, beans and deck. Mid steel me columns and mane steel mu beams. High yield me beam stirrups and deck. Deck the k ewers 9 ".

BRIDGE 15. Cantilever well abots. 6'theck at base which is 24^{\prime} wide and 4^{\prime} thick. Precast prestsessed beaus with an $8^{\prime \prime}$ thick deck slab. Abut.watls and beans have wild steel. Deck has high yield steel. Conctete to walls 3750, deck 4500 and beaus 6500 .

FOOTRRIDGES. Cordinvous purest fessed hollow box beams.
WALLS See hand out. Most of themis, or clay or fill.
CONCRETE GENERALLY All exposed conctetc air-entrained. Columns on Badge 14 and Bridgesll \& 12 use steel shutters. Neatly all corctete pouted with a Mark -Thomson mobile conchie pump.

